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ON THE THEORY OF FLEXURAL PIEZOCERAMIC
CIRCULAR PLATE SOUND RADIATORS

INTRODUCTION

A convenient source of underwater sound in the range of 100 cps to 50 kc iV the
family of flexural, circular, piezoceramic bilamellate disks. These, in diameters of 0.5
to 25 cm can radiate up to 1/2 to 1 watt per square centimeter for applied electric fields
of 150 to 250 volts rms per millimeter of half thickness, pulsed power. A simplified
theory of the performance characteristics of such sources is presented in this report.
In the first part of the theory the piezoceramic disk is centrally supported, and in the
second part the disk is simply supported on its edge. Both cases are treated only with
reference to the presence of an infinite stiff baffle enclosing the half space into which the
sources are radiating acoustic energy. The analysis proceeds on the assumptions of a
Class I (Fischer's classification) piezoelectric transducer and not on the basic laws of
the Class MI transducer, to which the electrostrictive types belong. This has been done
to avoid transduction ratios and lumped parameters which are frequency dependent. As
a result of this choice, the material constants appearing in the course of the paper are
only "effective" piezoelectric moduli, to be measured on particular samples of polarized
ceramics by techniques conventionally applied to true piezoelectric crystals. In short,
the ceramics have been converted to "effective" crystals, and standard piezoelectric
theory has been applied to their behavior.

CENTRALLY SUPPORTED FLEXURAL DISKS

The Structure

The transducer (Fig. 1) is a bilamellar disk, one or both halves of which may be
actively polarized electro strictive ceramics. While it is always advantageous to have a
disk of two active halves, the use of a central support may require half of the bilamellar
structure to be a passive metal, e.g., brass. Each face of an active ceramic plate is
completely electroded with fired silver paste. Permanent polarization of the ceramic is
in the z direction, normal to the plate. The structure is driven into forced flexural vibra-
tion by the application of an alternating electric field E applied across the thickness of
the ceramic plate.* Upon submersion, the disk radiates sound into a semi-infinite liquid
medium of characteristic impedance pwc,, from a circular hole of equal diameter in an
infinite stiff baffle.

Figure 2 shows the conventions of signs which hold in this analysiv. The neutral
axis of bending is set at z = 0. For sma-ll displacements w in the positive z direction, the
displacement u in the x direction is u-- -z0(w/ýx), where Bw/lax is positive, as shown. The
strain Sx. in the x direction is SXX .z=aX=(2 /x 2 ). We note that Z2w/ax 2 is nega-
tive when w is positive and that the strain is positive (tension) for positive 2. Similarly,
for displacement v in the y direction, the strain in the y direction is Syy - -z(av/by) =
. Z (Z 2w/ýy 2 ). A positive bending moment M. or My is one which causes a deflection of
the disk in the positive z direction, i.e., downward, as shown, and induces resisting
stresses %, or Tye.

*See List of Symbols at end of report.
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Figure 1- Schematic cross section of a piezoceramic-brass
circular plate sound radiator

The same conventions hold for a
- cylindrical coordinate system in wb.c".

01 the orig:in corresponds to the origin of
the xyi Cartesian system.

II

F S t Equations of otate

The circular bilanellar disk (ball
thickness h) is assumed "very thin,*' d

a the stress system correspondingly two-
Sdimensional. This restriction to stresses

TA. MT TO in aplane is indicated at any stage in the
IS analysis by a bar over all material con-

stants (i.e., z,,, a,, etc.). A cylindri-
cal coordinate system is used, and, for
convenience in writingo, r, -. z are desig-
nated by the numbers 1, 2, and 3. In such

Fi e T D a plana cylindrical system the equations
Fiuepa Darametr a7allusntratin desection o h of state of the bilainellar disk under sym-
iarametersoun elmnat i f metrical electrical excitation may be
cirlr lRmediately taken from the tensor form

used by Mason (1).

d2 v-.j I dw
T el* y C1 2 id rir 3 l E3  (ios

E d2w _E I dv (_b

D3  -~~~~ e z -i c+l t ) 3 -(c

The negative sig appears in the term -i E for the following reason. If a cylindri-
cal pill of matlerial Is scooped from the interior of the ceramic, and if a positive grayient
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Ej is applied across the thickness, the pill is assumed to expand in the z direction, the
polarization being correctly oriented for this expansion. Now if the material adjacent to
the pill in the z direction is hindered from moving (condition of zero strain), it will
develop a resisting compressive (negative) stress. Similarly, simultaneous contraction
of the pill in the r and 6 directions will induce tension stresses in the adjacent material
which are the resisting stresses T, and T 2 . Since the "effective" piezo modulus i3i is a
negative number, a minus sign is added to the term Z., F3 so as to render T, and T 2positive.

Corresponding to the internal resisting stresses T, and T 2 due to the applied field E 3

are the internal bending moments M,, %1. resulting from bilamellar action. By suitable
integrations over the thickness of the plates, expressio'n are obtained for these bending
moments in terms of displacement derivatives.

Zd Z = D 1 h2 F. (2a)~ J dr2 r dr 2

.. ,z.d - D d- ) i 3 1 112E 3 ; (2b)
"dr2  UF 2

where

M, is the internal :;ending moment per unit of circumferential length

Mr is the internal bending moment per unit of radial length

D is the flexui al constant, - (2 '3) h3 iF

is Poisson's ratio, which for planar stress is cE cZE

Sis 1 or 2, dc., .-ý...ng, respectively, on whether the backing plate is inactive (i.e.,
is metal) or- a "-,. (i.e., is a ceramic plate polarized for bilamellar action),
assuming, if !,-. .hat active halves are connected in parallel.

Similarly, the averag'r v-i -ric displacement in one plate is

'31 h (d2w I d S(

6. 2 r d'r• ' 33 E-1

As the radiation i..* . nduces a real surface pressure on the face of t.P disk
exposed to the medium, an e.xression is needed for the internal resisting shear 0, per
unit of circumferem-ial length. Since the applied electric field E3 is independent of the
radial coordinate r, we may use conventional thin-plate theor; and write (2)

(0% I d2w - dL (4

Equations 1 to 4 are the foandation equations upon which the framt of the analysis is
built. They carry with them the limitations that restrict the final formulas to narrow
grounds of validity. In particular, they are piezoelrctric in origin, linear, and planar,
the electric fields are low in frequency and small in magnitude, the sound fields are due
to infinitesimal displacements, an infinite stiff baffle is present, and edge effects, cement
between plates, etc., are considered to affect the results in minor ways only.
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Coefficient of Electromechanical Coupling

The mechanical and electrical equations (Eqs. 2 and 3) for the state of flexure must
be satisfied together-, that is, they arise from independent laws of nature and are not
reducible to a single statement except by simultaneous solution. If the expressions for
Mr and Np are added and the resultant solved for the displacement derivatives, we obtain

_d2  1 dw -r"NM e 3 1 E3 Z,

dr" r dr D(1.0) ÷ +Y)

i.e., mechanical curvature o! the disk is expressed in terms of the internal bending
moments representing the me•hanical and electrical fields. Since the same quantity on
the left appears in the electi ic field equation (Eq. 3), we have, upon subs'itution, a single
equation combining the influence of both fields.

=3 E31h (Mr +" 14 2~E * 3'3 2 1

8;E +.I )t1 (5)

This equation is a statement that a charge per unit area on the electrodes of one
plate acci mpantes the condition of flexure. The first term on the right-hand side is the
mecbanil.al or motional charge, and the second term is the charge due to applied field.
The coui,.!,, ,lfect of the mechanical field appears as an increment in the clamped
dielectric cons..nt E233, which takes the form of the second factor in the -n.losed term.
Such a group of symbols appears in planar piezoelectric analysis and ic ::-,vemently
designated ar th, coofficient of electromechanical coupling in the flexure mode. Bech-
mann '$) defines the nwixed plavar coefficient of electromechanical coupling (1,2).,i by
the relation

2

For the state of flexure, therefore, the coefficient of electromechanical coupling k 2 is

k ;(k 2) (6)

We note that this equation is independent of the manner in which the disk is mechani-
cally supported. When the structure has one active half and is metal backed, k I
3/8 (kI 2) . Equation (6) reveals an important feature of flexural sound radiators,
namely tMat the interconversion of electrical and mechanical energy is markedly reduced
by flexure from the latent potential of the planar state to 3/8 ; of this potential. This
reduction of coupling is balanced, of course, by the increased compliance of mechanical

structure and the consequent lowering of natural
z frequencies of vibration. In many applications,

A- the latter advantage more than overrides theS-1 ' resulting poorer power-handling capacity of the
- structure.

,- Mechanical Displacement Under
Forced Electrical Drive

S~NEUTRALAs The mechanical displacements of a piezo-
ceramic disk which radiates sound into a semi-

Figure 3 - Elementa, vclume infinite liquid medium iaay be found by applica-
of a c i r c u 1 a r phlte sound tion of conventional elasti.c and acoustic theory.
radiator Figure 3 shows an elemental volume of the disk
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in cylindrical coordinates; m is the mass per unit of area and UT the total differential
bending moment per unit of circumferential length. Equating internal force per unit cir-
cumferential length on a (FT in the z direction) to the accelerationi of m, we have

m~ r(rd 9 dr) .d2w
FT =- dr 2

Now to quantities of the first order in infinitesimals, we see from Fig. 3 that

(r M, 4--r dr) (+ dr) d6 - Mr(rd9) - 2 Medr C+ Qrdrdd( 2
, r -M rMe dr d&.

Letting the primed symbol represent differentUation with respect to r, the force-
acceleration equation becomes

2M, + rU:- - r Q, +Q - d
dt

2

Although M, and m: are independent of the applied electric field, the magnitude of the
elastic constants BII, E12, etc., depends upon this field. For low electric fields, we
assume D3 very small and use the constants Ell, E12 instead of the constant 1, ,
etc., where by definition

11 12 kf)

For the btate of larger electric fields, D3 is hardly zero, and we must use a value of
B, that lies between E 'r and a D. In all cases, however, k2 is, at mast, about 0.10, and
the correct choice for Ihe constant." is seen to be no critical matter. Substituting for M:,
Me, thus modified for the particular magnitude of drive, we obtain

d4w+ 2 d 3w I d2w I dw m d 2wQr - 1 dQ,

drT dr 3  r 2 dr 2 r+ -3 -"r + re jW W

where

3 - ll

The internal shear force Qr per unit of circumferential length depends upon q(r), the
external load intensity per unit area. Static equilibrium requires that

2rrQ= fo 2n~rdr q(r)

from wh'-!i

Qr + I dQ- q(r)

From the assumptions of thin-plate theory, we restrict q(r) to acoustic loads; i.e.,
q(r) is the reaction acoustic pressure p(r). In the condition of steady-state sinusoidal
vibration, the equation of motion becomes
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d2 *d, d k2 k 2 4 e k*lp °")"

where

m4 3pp - 2

The surface pressure p(rw) may be determined from the following considerations.
Since each element of area dA and veloc4. - i* radiates a spherical wave into the half
space, the surface acoustic pre.•.re is a summation of the pressure interaction effects
of these waves. We have, from• - 1.l :her (4),

P(r t) = P.Cwk . !dA,

A

where R Is the Oistance from an arb'*: tAry point P in the plane of the, ,iisk to an element of

area RdRd and o is the angle between 13 and the line P drawn to the origin of coordinates.
For the stri•dy state, W is equal to jwi, and sinc( p(r,&a) is a negative quantity, we obtain
the final e, .gtic-acnustic equation .•f motion

1- 4 P;c.2k 2 Aj
V, J- W e dR d, (8)

where V4W- 4'-W equal-, '" .4'.hand side of Ec 7.

Except for very siri,. :• .4eometries and for simple displacement distributions, this
integro-differ,..itial equation is intractable. We can avoid this difficult mathematical
situation by making the right-hand side independent oi the variable r, which means in
effect independe.: -. the variable W. The reaction pressure, which is known to be a func-
tion of the coordinaw r and the frequency w, is replaced by an approximate pressure
constant with radius but strongly dependent on the wavelength of radiation, that is, on
frequency. Instead then u! seeking an exact soluticn to the radiation problem posed by
Eq. (8), we will seek the solution to a germane problem in which the rc.ternal reaction
pressure of the liquid medium is arbitrarily defined to be independent of r, while still
retaining dependence on w. In place of Eq. (7), therefore, we will set the equation of
motion to be

- k (9)

where a is the outside radius of the disk.

The reaction pressure p(a,w) can be only an average estimate of the true pressure
p(r.&a).. A convenient procedure for determining p(a,.a) is to assume a displacement
curve, W(r) for the flexed disk, conformable to the boundary conditions, and perform the
Integration required by the right-hand side of Eq. (8). The result of this first step is the
pressure function p(r.w). McLachlan (5) carried through such an integration for the
assumed distribution I = Wo l - t(r 2 /a2)] and found that

•'. = [ - T, 4 + L_ ... + i ( -]T. 6 , Ks (10)

where 9 2 and as are known algebraic functions of the radius r, and g1 and g! are known
hypergeometric functions F(a, A, y, ,) of the same coordinate. The symbol r stands for the
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wave parameter ka. The infinite series of Eq. (10) is appli.able to any size disk having
the velocity distribution prescribed. In generaL, however, the frequencies corresponding
to the grave mode of vibration are so low that ka is less than 1/2. We assume, then, that
ka << 1/2 and write, after McLachlan (5),

p(r,t) p~c3 1o r ""I+ j(ka)gli (U)

for the case- of the centrally supported disk. The exact expression for g, is9 =-I 2j(, )+b p(.- F ,)]
br I~-o

The average pressure p(a, t) is fouud by averaging Eq. 111) with respect to disk
area. The result is

A convenient symbol for the impedance portion of this equation is Z(a,w), defined by
the relation

p(a.t) = Z(a,,) Vo

Z(a~ca) = P'C' [ii_ + j -W ka].

Having now defined the nature of the expression p.(a, t), we return to Eq. (9) and sub-
stitute our results, recalling that in the steady state, W = jW... We have, then,

D"a (13)

This is an inhomogeneous differential equation, the right-hand side of which is independ-
ent of the coordinate r. A particular solution is easily seen to be

j WWWZ(a.W)

The complementary solution of the homogeneous equation is found In various texts,
e.g., Ref. 6. Adding the particular solution to the complementary solution, we obtain the
complete solution

jcaZ(a.•) Wo
W(rs) = aJo(kr) + ÷Y 0(kr) + ylo(kr) + SKO(kr) - -- k ' (14)

where a, 3, -y, and 8 are four constants, to be z'etermined from the conditions of support.

The boundary conditions for the case of a flexural disk supported by a rigid built-in
central pin (radius b) are easy to formulate, but they may not correspond to the actual
stress configuration because of local yielding, rotary inertia effects, etc. At the risk then
of stipulating what may be an ideal situation at the point of support, we specify that
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at r b at r a

1. W 0 3. M-=0

2. dLW=4. Qr O.

Four conditions are thus available for determining the four constants a, .3, y, and 8
by employing explicitly the generai solution contained in Eq. (14). Upon performing the
necessary derivations, we come to

jc•Z(ac) Wo
aLJ°(klb) + PrY°(klb) + Ty 0 (ckb) + 6K°(klb) k D 4 (15a)

-kfaJ 1 (klb) + 3Y1(k 1b) - "yl(klb) - bK,(k~b)= 0 (15b)

3 F3 1 E3aA1 + tA2 + /A3 + 6A4 =4 E1D k1,h (15c)

k1 B ,B2 + yB 3 + 6B41 0 (15d)

where

A, =-Jo(k1 a) (1 - v)J 1 (kls)/kAe

A2 = -Yo(kla) + (1 - v)Y 1(kI*)/kls

A3 =-Io(kIS) - (1 - z')Ii(kla).'/kl

A4 = Ko(kla) + (1 - z')K1(ksa)/kAs

Br = J 1 (kla), B2  Y 1(kla), B3 = 1 1 (kIa), B4 =-KI(k~a).

Simultaneous solution of Eqs. (15a, b, c, d) is rapidly performed by use of Cramer's
rule. We can, however, simplify the results by cting that for centrally supported disks
the ratio b/a is considerably less than unity, so much less, in point of construction, that
we may assume that b--*0 without major error. As a consequence of this choice, Eq.
(15b) reduces tc

b-.0 •LYl(klb) + SK1 (k1 b)1 = 0,b---0O

or
2

- - = 0.

Substituting tais result irn Eq. (15a), and again letting b--tO, we obtain

jwz(-,o )Wo
D'k 4

I

Completing the solution for the two remaining conditions, Eqs. (15c) and (15d), and
substituting the results in Eq. (14), we obtain
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W(r(82 + ( A " [Jo(klr) -1 0(k~r)

-7,B" 3B B3) - A3)] AP ki)+
S + (kr) + K0(kjr

+ pflo(kjr) - 1-, (16)

where

3 e31E3 jwZ(aw) 10

2D 12, V

A (AA- A3 ) (B2 +•B4) - (BI - B3 ) (A2 +1-A 4).

The important quantity, of course, is the displacement at the outer edge, 10. At. a,

W0 {(B2 B4) (J0 (kt") - 10(kta)] - (DI - 1,1) [Yo(kia) + Ko(k-a)]
-jca Z(a,w+) B2[,+ A

A-jW Z8W (a,;) 2 A4] -3[82 +1 B4] 1 f30(kja) 10(k~a)]

Dk As(BI -8B3) - B3(Al - A3)} [(kia) +-!Ko(kia]Sj W+Z(S, Wo) [1 ( ) -1

1Aj".Zk4ca) o(kla) - 1]. (17)

The edge (maximum) displacement 1W is proportional to the electric gradient E (that
is, proportional to the constant 71). In the absence of acoustic load (i.e., when Z = 0) the
expression for A becomes zero for an infinite number of values of ka. The lowest of
these (excluding ka = 0) corresponds to the grave (or umbrella) mode of vibration; t-.e
remaining values of ka correspond to modes of vibration consisting of a successivel3
increasing number of nodal circles. With the accession of an acoustic load the denomi-
nator, for certain values of ka, reaches a minimum, but it may never be zero, since
Z(s,w,) is a complex quantity. We note in particular that It is the resistive part of Z(a,w)
which contributes an imaginary term to the denominator and :hat a purely reactive load
will not restrain the motirn of the disk at mechanical resonance.

Transduction Ratio

The time-varying charge Q accumulating on the electrodes of one plate is obtained
by integrating the expression for the dielectric displacement, Eq. (3), with respect to
plate area. We have (assuming b--0)

Q : D3 dA :-E 3 1 hn r +f rdx +77a2e 3 E3

or

Q = -are 3 1 haI•! 1 + 7wa
2 eC3 E3 - (18)



10 NAVAL RESEARCH LABORATORY

The alternating current due to an applied voltage V3 (across one plate) is therefore

i = iw731hhkla { [jj(kla) + 1 1(kla)]

)(B1 - B3 ) [Y1(kia) + KI(ka)]

jw Z(a,w) W0 B3 (A2 + 7)- A3 (R2  B

-Dkl4  jJ(Z)+1(~)

j oZ(a ,o) Wo A3 (B} - B3 ) -0 1 - A3) 2

D'ka•w wI1(kla) + j} C V3

While the electric current thus found is a useful parameter in exploring the acoustic
performance of a centrally supported disk radiator, successful application of four-
terminal network theory requires some simpler form than that presented by Eq. (19).
To obtain a more convenient expression for i, we note, from Eq. (16), that to a first
approximation in kr, the deflection W has a parabolie! distribution with respect to the
coordinate r; that is, W , r 2 . If then we assume a ueflection curve of second order in r,

W = Wo(r 2/a 2 ),

we find dW , =2 (second-degree terms in W only).

The charge for a condition of parabolic distribution becomes

I QO - N Wo + n a2 c3"3 E3 , (20)

where N = 27;E 3 1 h = '7e 3 1 t.

The symbol N is the ratio of electric charge accumulating on the electrodes of one
plate to the peak mechanical displacement (at the edge of the disk). To the approxima-
tion of second-degree terms U1 r for the variation of mechanical displacement with radius,
N is seen to be a real number. When fourth-order terms (and higher) in the deflection
curve are considered, the magnitude of the slope diminishes, and with it the transduction
ratio N. To find the transduction ratio corresponding to higher order deflection curves,
we assume more complex displacements, consonant with the boundary conditions, or,
alternatively, we assume some known mechanical load on the surface of the disk. Two
examples of the former method and one example of the latter are given below.

Example 1. Let the displacement curve be of the form

,W =,o [A B-f (-_E'4

This type of variation with radius has been used by investig,+ors in recent times.
Southwell (7) has shown that such an assumed curve yields a value of grave resonant fre-
quency 75 percent of the correct figure, if A = I and B = -0. 275. Proceeding with these
assigned values of A and B, we obtain
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, (A),, = 0.9

and INI = 0.45nTi3 1 t

Example 2. Let the displacement curve be the one which Southweil has shown to

yield a value of grave reson2nt frequency 99 percent of the true value; that is, let

W =W,, [r rqq- 2)aq-2 r 2 logs

q 2.89.

Proceeding with the integration, we find that

INI = 0.52n73 1 t.

Example 3. L~t the disk be loaded on its surface with a uniform real static
pressure p.. It is easy to show that the total charge !Q1 from one plate is

p3 7 pa
4 c31 3 821Q1 = '!4 t2 t'2 d3 F'

2 2

where F= Pora 2 .

From the theory of elasticity,

-
F &

2

1, YEt 3

Hence

4 = r od31 t W.o

= 0.5257i 3 1 tW. (for = 0.3).

Therefore INt • 0.53 7T 3 1 t.

The inclusion of terms to fourth order in the slope (dW/dr) r a reduces the transduc-
tion ratio found for parabolic distribution by a factor of 2. Correspondingly, the presence
of an external static pressure load introduces a similar reduction in N. Terms higher
than fourth order affect these results in minor ways only. We conclude that the trans-
duction ratio under actual operaling conditions lies between INJ = 7 T31 t and -NJ = (?/2)i3 j t.

We have now reached a point in the analysis where further progress is impeded by the
complexity of the approximate deflection curve as revealed by Eqs. (16) and (17). It is
more convenient, from this point on, to assume a deflection curve af" aimple algebraic
form, consonant with the boundary coaditions, such that computations of acoustic power,
etc., are facilitated. Such a choice would leave oqe factor, namely the peak displacement
W., indeterminate. However, the transJuction ratio N relates W, to the charge Q and
therefore relates mechanical force F to applied voltage V3 . With ihe magnitude of N
explicitly known, the pe,:k .•splacemen, velocity, etc., becori* electrical quantities whose
magnitudes are then precsely determinable. In accordance with this procedure, then, we
choose a deflection curve of simple parabolic form, namely I = We (r/.) 2, and proceed.
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Radiated Acoustic Power, Mechanical Reactive Power, Kinetic
Energy, Resonant Frequency, Acoustic Pressure and Mechanical V
Q of a Centrally Supported Disk Whose Deflection Curve is
Parabolic (Second Order in r). Infinite Baffle Present.

In the far field, at a great distance R from the infinite baffle in which the disk with
parabolic deflection is located, the radial distribution of real acoustic pressure p, has
been found by McLachlan (8) to be

P o4.2 [jj~z) 2 J 2(z)] (21)

z ka sin 6 k =22  X wavelength.

Since the liquid-particle velocity v at great distances is p,/pc,, the peak sound power
P, radiated into semi-infinite space is

.- p. .v dA27L 8 in 0 d,9pW 0 ff rj11(z) 2J 2 (Z)]2

or

p . 84 1-) 2( (ka)-2)P. 2 •. 2ý (2, +, 1) (2m- 1)...

. 2.2. 2 •a4)2

(2 +m)! (I +m)! .(4 +m)! (2 +m)! 2 (3 +m)! (I +m)! (2 + m~i

When this expression is expanded, the peak zeal power becomeas

P>=,- [I,:. { t-<<k .. -m,

At the frequency of mechanical resonance in the grave (umbrella) mode, the magni-
tude of ka is usually less than 1/2. Llimtirg the infinite series of the above equation to
the firs'. term only, we obtain

P. = j. 2 a.4 (peak power for condition(
ka << 1/2).

The mechanical reactive power P, can be derived by a similar procedure applied to
the reactive pressure Pi, explicitly written in Eq. (10). As in the above case, we limit
the expression for p, to the first term In ka and write

p

P= JA Pi vdC

iOC 2jT2Wk j ~ 3 db.SJ owev20/6va3w(k, ) w e h lbave

Since the value of the Integral is 20/637r, we have
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Px j wL1 U2 (23a)

63= -• PVt 3 . (23b)

The parameter L, is the inertlal mass which the liquid medium adds to the disk

flexing in the grave mode. It coincides with the values found by McLachian (5).

The magnitude of the kinetic energy of vibration (Tp) of the disk with no acoustic load
is also found by a simple integration:

or

T, = o2 M =,a 2 ppt. (24)

The lumped mass, corresponding to the edge velocity w*, is therefore 1/3 of the
actual disk mass. Adding to this lumped mass the inertial mass of Lhe water (LI ), we
obtain the total kinetic mass Mq, corresponding to Uo;

iq &a2 t PP + 0 (25a)

120 p, a
63v PP (25a)

The presence of a semi-infinite liquid medium may be thought to r~ise the density of
the plate from its value pP to po(I + /3). L-_ an ordinary design for a water med!zm pa•p P t
is close to unity, making a about 2/3. One result of this added maus is to lower the
natural resonant frequency w of the disk in the grave mode from its vaiue in a vacuum
(approximated by air) by the factor (1 + ,6)-. An expression for % may be obtained by
solving the secular equation

S= 0. (26)

where A is the denominator of Eq. (16) in the absence of acoustic load. We obtain as the
first root of ihis equation the value ka = 1.933, a magnitude quite close to ka = 1.937, fGund
by Southwell (7). Upon solving for ,, the vacuum resonant frequency becomes

-t~ (27)

Hence the resonant frequency in a liquid medium (w) becomes

wi Gal 1;C6 CL 28)

A spherical wave (such as is radiated by the disk for the conditio ha << 1/2) of
source stren-th Q,, lo*ing into a semi-infinite medium bounded by a stiff ba~ie, develops
a pressure p in the far field (distance R) whose expression %4) Is

P jk22a POW)
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We omit the time-dependent factor. if the velocity distribution over the surface of
the disk is parabolic,

f v.dA fJ• i2 dr

(V a2 /2) Y*o.

From this, the absolute magnitude of far-field pressure is seen to be

p. a?2a2 (29b)1Pl = e Wo.
411

Anotber important performance parameter of the disk sound radiator is Its natural
damping factor ad, or its steady-state mechanical 0'. For assumed parabolic deflection,
the rms radiated power (Pr,,) Is

Prs2 16 T, iO *

The rms kinetic energy of the plate and water is one-half of the magnitude found
previously, since this quantity varies as cos2 t- In any cycle of vibration, however, the
mean energy T, is twice the kinetic energy. Hence the mean energy of plate and water is

77 ,2,PPO +,•)t j.2

Now the diminution of mean energy during free vibration is equal to the radiated
power; that is,

dT
dt re

or
,rP (I+ i,,)t jo1 oa2 2

3 16 CW

From Itis,
,o =-ad,,,,..

where

ad = 16 4%t c.( +p) (30)

The quantity ad is the temporal damping factor for free vibration, when the damping
is due entirely to radiation. With it we can derive an expression for the number of cyc.les
of free vibration (at resonant frequency &) that must be completed for the amplitude 1o
to be reduced to lie of its original maximum value. This is u./2 -- , and hence

."ip
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Now b7 definition, the mechanical Q is

Therefore

= 2.47(1+)3/2 8 ) c(
,. VP- - (3 1 )

Mechanical Displacement Under Forced Mechanical Drive
and Receiving Respons".

A steady-state (sinusoidal) pressure of magnitude p, (independent of the parameter
ka) is allowed +o drive the submerged, centrally supported disk. We stipulate that
ka << 1/2 anri write the equation of motion as

V4W - k4 W + t., (32)
where

j ( Z(a,,.,) Po
if "-

As for boundary conditions, we require that D3 = 0 (i.e., open circuit). Assumingonce again that b/a << 1, we obtain for the first two boundary conditions

a + = 4 + 0'

2
7 - =6 0.

Proceeding with the two remaining boundary conditions, solving for a, A, y/, and 8 on
the assumption that E- is zero, and substituting in the displacement equation, we obtain

_ '- {[.(,2 +_I,).- B ,) .( - - ) Ia- + [,D.,VA, _+A3)_A3(8iB 3)1[yo(k 1,) 41Ko(k I

"I [ . (A +(A.+.+) - AS (2 + -14)] [JO(ka) - o1,ka)]

j-7aw E A3(8 1 -%)-Bs(Aj A3)J1 ,(kj*)+! okika) - f 1c0h(k 1a)-i,.

(33)

"The complexity of this expression requires that some simpler representation be
sought for the accumulated charge IQ[ due to the pressure p0 than is contained in the
requirement that I( = rU-3 1 adW/dr)r.*. We assume, as before, a parabolic deflection
curve, and calculate the open-circuit voltage V3 due to i Q1 stored upon a capacitor of
area a 2 , thickness h, and dielectric constant e33 - We have then

V i31 t2 n W.
PF = a 2- g 3 pN (34)

where n = 2 for parabolic displacements. We can use the same formulation for the case
of fourth-order terms by setting n = 1.
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It is useful, at this point, to derive an expression for the receiving response at fre-
quencies so low that Z(a.oe) becomes negligibly small, that is, at quasi-static load condi-
tions. From the theory of elasticity,

wo .4
P. 84 (static load),
Po t 3 Y~r)A

where (Y D)Av is the average Young's modulus at zero current.

Upon substitution, we obtain

V. a 2  Z3 1n (
p0  4 t 3 (yD) (static load). (35)

Formulas Describing the Acoustic Performance of a Metal-Ceramic
Bilameiiate at Mechanical Resonance, Radiating.Sound into a Liquid
Medium. Parabolic Deflection Curve Assumed and Infinite Baffle Present.

At mechanical resonance in the medium, the magnitude of edge velocity W, is gov-
erned solely by the radiation resistance of the medium to the disk vibrator. Since the
real acoustic pressure for the condition ka << 1/2 is independent of radius, the total
mechanical force restraining motion at mechanical resonance is Fa = p-a 2. We know that
edge velocity and pressure are related through the impedance equation, Eq. (10). Hence

pc,(ka) 2 
77 S2 .

FR (36)

When electrically driven by a voltage v3, the applied (mechanical) voltage force NV3
balances the mechanical resistance force FR in the steady state. Recallinig that N = ?Ys3t
for the condition of parabolic distribution, we find, for edge velocity,

o 4NV
0 pwc,(ka) 2 

77 a2

or

C•E3
1.71 E31 o-2--. (37)

This is a key equation, for with it, and with Eq. (28) for the resonant frequency (, we
can substitute into Eq. (22c) to obtain an explicit equation for the acoustic power

5.36 2 C V3
2

Similarly, substituting Eq. (37) into Eq. (29b), we find that the (real) acoustic pressure in
the far field (distance R) for ka << 1/2 is

0.924 e31 C1 ,
lp! = 0-2v31 .V (39)

R C-

As for receiving response (V/p.), when an alternating pressure of constant magnitude
p0 is applied (at the mechanical resonant frequency) to one side of the bilamelkte, and
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when simultaneously the electric terminals are open-circuited, an edge velocity is ini-
tiated whose magnitud, is

4p.
pc.(ka) 2

In consequence of the electromechanical coupling action, an alternating electric cur-
rent i--NWo flows through one plate of the disk and charges the capacitance C. to a potential

Ni o 4p0 N
V = Q- -=• = p°

C' j cCC 3 pWcW(ka)24WRC*

Substituting for ()R and N, we obtain

1.5 2 11 3,C (40)

t . . 3 PwC

The open-circuit voltage reported by this equation depends, for its magnitude, on the
presence of an infinite stiff baffle. In the absence of such a baffle, the magnitude of
response would fall by a factor of 2. The response, in any case, is that across one of the
two possible active plates of the disk.

Conclusion

Equations (6), (27), (31), (37), (38), (39), and (40) are the most useful results of this
part of the analysis. Taken toret^.er, they form a relatively complete summary of the
acoustic performance of a centrally supported piezoceramic. One seemingly vital equa-
tion appears missing, namely an expression for the motional admittance. This is not a
serious omission, sin - the small magnitude, of flexural electromechanicaJ coupling
renders the bilanmlla almost a pure capacitor, when loaded by a liquid medium. In
many instances the nr ,.,nal resistance is loes than 1/10 of the reactance at mechanical
resonance, and for mocr. "power absorption the current flow through the radiation
resistance is relatively sr:...J No great error therefore ensues in treating the bilamel-
late as a "pure" capacitort. As for material constants, it is best to determine these by
actual test; e.g., it is best to det3rmine c 0 by measuring the resonant frequency in the
liquid and computing this quantity irom Eq. (28). Only in this way can one avoid dubious
values for these parameters. Preliminary estimates of the values of these parameters
based upon the available literature may be obtained from Table 1, which lists the piezo-
electric properties of three popular piezoceramics.

An alternative procedure for determining the electrical series resistance R at veloc-
ity resonance is to assume that R ^- X,/Q., where XB is the blocked series reactance at
resonance and QE is the electrical Q. The factor QE may be obtained from a knowledge of
0. and k 2 by the additional approximation that Q5t 1 -k /k f2 Q,. At velocity resonance
therefore the electrical impedance is approximately

Z (..,R) Rs 1- ( X13 .
1 -kf 2

BeCoPY
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TABLE 1
Material Constants of Polarized Ceramics

Electromechanical Ceramic*
Property

(See List of Symbols) Ceramic B PzT-4t PzT-5t
BaTiO3 - CaTiO3  PbTiO3 - PbzrO3 PbTiO3 - PbzrO,

1E (planar stiffness) 127.9 - 109 (N/m 2 ) 91.3 x 109 74.7 x 109

12 (planar stiffness) 38.3 x 10' (N/m 2 ) 27.9 x 109 23.0 x 109

sA (complianct.) 8.62 x10" 2 (m2/N) 12.05 x 10-12 12.05 x 10-12

kp (planar coupling 0.33 0.48 0.54
coefficient)

' z (strain-electric -58 x 10-12 (C/N) _97 x 10-12 -140 x 10-12

field modulus)

'31 (planar piezo modulus) -9.45 (N/mV) -10.38 -12.01
e 3 3 (blocked dielectric 9.64 x 10-9(C/V.) 7.89 x 10-9 10.24 10

constant)

33 (dielectric constant at 10.7 x 10-9(C/V,) 9.7 x 10-9 13.22 x 10-9
zero stress)

0C (ceramic density) 5.4 x 103 (kg//m3 ) 7.6 x 103 7.6 x 103

S(Poisson's Ratio, 0.3 0.3 0.3

*The chemical content -f the above listed ceramics may be obtained by writing tc the
author of this paper.

tThe two PbTiO3 - PbzrO3 mixes are different in composition.

EDGE-SUPPORTED BILAMELLATE DISKS

Wa shall consider in this part a bilamellate disk of two active halves, simply sup-
ported at its outer edge. Care must be taken, in building this structure, to insure sim-
plicity of support, i.e., to insure absence of clamping while at the same time not restrain-
ing radial displacement along the outer rim. In any case, the boundary conditions = 0,
M, - 0 must apply;, that is, the external casing must restrain but not flex the dist.

Coefficient of Electromechanical Coupling, Bending Moments,
Dynamtc Equation, and Soltions

A few of the results of the previous derivations are immediately applicable, since
the mode of mechanical support does not enter into the basic equations of state. From
Eqs. (2a) and (2b), we obtain (since ; 2),

Mr "Di [2 ý •- - e31 h 23 (41a)

dr
2 r dr 31 "
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Similarly, the coefficient of electromechanical coupling in the flexural (grave) mode is

kf = T3(kp)Hx. (42)

In order to write the dynamic equation, we need an expression for p(aw), as required
by Eq. (9). Now the radial distribution of pressure p(r, t) has a form Identical with that
expressed by Eq. (10), with the exception that the g's (hypergeomnetric functions) contain
additional terms. Restricting ourselves once again to the condition ka << 1/2, we employ
only faciors g1 and g 2 in the infinite series of Eq. (10). On the assumption that the
deflection curve has the form w = we( 1- (r/a)2], we consult McLachlan (5) and find that

92 1/2, and tj isg F -!1,1,b) F1.b2).+ b2 [F(- 1. b2 - 'F22)]}
Performing once again the necessary integrations, we find that the reaction pressure,
averaged over the suriace area of the bilamellate disk, is

p(ac,) j aI€Z'(a*.) (43a)

Z (.W) pC.- SLO)L j §i ka. (43b)

It may be concluded that a change in the mode of support has altered the pressure
distribution in a minor way only, assuming, as has been done, that the deflection curve is
parabolic in both conditions of support. Equations (43a) and (43b) lead directly, in con-
junction with Eq. (13), to the equation of motion (steady state):

k 4! W wv'= ý Z' (aW)
I" (44)

Although Eq. (14), with T. replaced by W,, is a general solution of the differential
equaion, the boundary conditions noted in the introduction to this section of the analysis
require that A and 6 be zero. Our general solution to Eq. (44) is therefore

W(r,.;) = aJo(k 1r) + 'y10 (kir) - iwZ'(*.,) W

The two condition3 that determine a.y are

aj°(k1 a) + ylo(k1a) = j kt
k k 4

11
at oil 3 =-2 D k 2 h

11 1

Upon solving these simultaneously and substituting the results in Eq. (45), we obtain
3 i•-l [lo(k1a) Jo(k 1r) - -o(k 1a) Io(klr)]

LD1211 1 Wt r

+ jw Z'(a.to) W" [)A3 JO(kir) - A, Io(k r)] jCi Z'(a. )
rk4 A. r -.
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where 6' A3 Jo(k1 .) - A, 10(k1 a). (46)

From this, upon setting r 0 0, we obtain

_3 e31 E3  [1 0(k 1a) - JO(kla)]
2 ED k 2 h • w + i'Z'(stto) Jc(Z(')(A3-) (4-)

D" k4 D4 k4

The displacement i, according to Eq. (46), is parabolic to a first approximation in
the parameter kr. We have seen (Eq. 20) that for such a distribution of deflection, the
transduction ratio N for one plate of the disk is iT 3 1 t. Under surface loads, however,
the transduction ratio diminishes, as may be seen from the following development. Let
the simply supported disk be subject to a static surface pressure P,. The charge accu-
mulating on one pair of plate electrodes is

•0 r+ St

Q= 3lJ 2 27r dr,
0

where

d 3 1 is the electric displacement-stress "effective" plezo modulus

S'. S. are the radial and tangential stresses induced in the disk by the load p0 .

From the theory of thin plates, it may be found that

*+S P .22[, rs.s= -P _

and
3 YotOW0

P0 2 4

Upon performing the required integration, we obtain

QR Y otd~l W•

t -3 'T31 t Wc•

that is, the transduction ratio N for the (static) loaded state is 3/4 of the value predicted
by a parabolic deflection of the disk. When two plates are considered, the ratio, of
course, will be twice the value of one plate. The advantage of using two active plates is
thus clearly evid-2nt, since the coupling, power, pressure, etc., will all be improved.

Aco'ust-. Power, Mechanical Reactive Power, Kinetic Energy,
MechQ•ical Resonant Frequency and Mechanical Q of a Simply
Supported Disk Whose Deflection Curve ;s Parabolic (Second
Order in r). Infinite Stiff Baffle Present.

An expression for th'. acoustic pressure in the far field (4istance R) due to a
baffled disk having a deflection curve of the form V IJl - (r/a)- is given by
McLachlan (5):
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2p a2W J 2(kla sin 9)
Pa - (k 1 a sin 9)2 (48)

A suitable integration over the spherical area of radius R of the produt.' of the acous-
tic pressure and the particle velocity yields the peak acoustic power radiated. 7n symbols,

p.= p vdA = - p
2dA

A PWC A

0 f J2(ka sin ()sin9
= sin sdn.

Upon evaluating the definite integral, we obtain

P 4i2 I -)m (4 + 2m)! ()(')(a22m

P W E A"' .m!(4"+m)! (2+ )! 2  (2m+ 1)(2m-)

or

W-- .2-g"" (49)
CW

We note that if ka << 1/2, the expression for peak acoustic power in the medium due
to a flexible simply supported disk is the same as for a centrally supported disk, both
having parabolic velocity distribution and both having equal maximum displacements.

To terms of first order in ka, the ractive pressure on the surface of the disk is

Pi P=CwW (ka) gi-

The magnitude of reactive power in the medium (Px) is therefore

P, = jw277*a3 pWuj f gj(-b 2 ) bdb

0

or
4 8 331 (50)

The mechanical reactive power of the medium whose expression has just been
derived is due entirely to the inertial effect of the medium. If the motion of each ele-
mentary volume of adjacent liquid is referred to the peak velocity W*, we see that the
inertial mass added by the medium is p, -3 (2418/315). Since the kinetic energy of the
vibrating plate T, is

Tt, = Jo £ 3c. 2(ka) 2,a2(i-b2)bdb

1 2 2

we conclude that the total effective mass of plate and water (M') referred to the peak
velocity W, is
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7q = a2 ppt (1 +,3)
2

1248 P. = p7 a
(315) 0 52. (5ppt

By thus increasing the effective mass of the plate, the liquid medium acts to reduce
the natural frequency of vibration in air ,0 by the factor (1 + X3) -. An expression for
% is obtainable from Eq. (46) by setting Z(a,w) equal to zero and solving the secular
equation .' = 0 for the lowest root, excluding ka = 0. We (btain, for this lowest root, a
value ka • 2.252, from which we find that the grave resonant frequency of a liquid-loaded,
simply supported plate to be

1.468 -1- c; (52)
a2

C;1

Since for equal maximum displacements (io ic) the radiated acoustic power is the
same whether the disk is simply supported or centrally supported, and since for parabolic
displacements the kinetic energies of the unloaded plate are also identical, we see that the
temporal damping factor a; has the same form as in Eq. (30), with the exception that ý8 is
replaced by X' and -R is replaced by wi. The mechanical Q, therefore, becomes

S/2 (53)q, •-%- 1Sl (+•' .Cp

where
-DCll

Formulas Describing the Acoustic Performance of a Simply Supported
Ceramic Bilamellate, at Mechanical Resonance, Radiating Sound into a
Liquid Medium. Parabolic Deflection Curve Assumed, and Infinite
Baffle Present.

In this section the same reasnning and the same steps in derivation are applied as
was used in obtaining Eqs. (36) to (40), with the additional consideration, however, th2t
the transduction ratio N is, for the entire disk, 2X the value previously used. A first
result, employing N = 2-' 3 1t, is the center velocity, *,. We obtain, for this key parameter,

1. A . 31 c E3 (54)
c 2

Similarly, using Eqs. ('-9) and (52) and this value for W,,, we derive the expression
for the acoustic power radiated

2

Ps = 11.65 E231 V (55)
e3 • 155

As for the acoustic pressure, it is noted that when z -c 1/2 the limit of J 2 (z)/z2 is
1/8. Hence the resonadt acoustic pressure in the far field (distance R) on the acoustic
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axes has the same form as in Eq. (29b), with the exception that W, replaces W, and w

replaces c. Substituting as before for • and We, we obtain

C v3w
!pj 1.36 "3 1  (56)

A procedure similar to that which led to Eq. (40) yields the resonant open-circuit
receiving response

P. 0.632 (57)

We ,.•serve here the same precaution in the application of Eq. (57) as was noted in
the application of Eq. (40), namely that this is the response from a single plate (of two
possible active plates) and that an infinite stiff baffle bounds the half space from which
the incoming signal takes its origin. In the absence of the baffle, the response will fall
to a value of one-half that noted above.

Conclusion

Equations (49), (52), (53), (54), (55), (56), and (57) constitute in their entirety a sum-
mary of the acoustic performance of a simply supported flexural bilamellate disk radiat-
ing sound into an infinitL half space. All the limitations, precautions, etc., noted in the
discussion at the conclusion of the earlier derivations are applicable to these last results.
In particular, it is of importance to repeat the stipulation mentioned previously that all

material constants occurring in the formulas be determined by test upon an actual disk.
Substitutions from generalized data available in the literature may, or may not, lead to
dependable results. And a final point- all power, pressure, and voltage response for-
mulas are based on assumed 100-percent energy conversion, no losses occurring on the
way. In actual practice, overall conversion efficiencies vary from 40 to 70 percent at
low electric drive (0.01 volt rms per mil of thickness) to 15 to 20 percent at high, elec-
tric drive (10 volts rms pir mil of thickness). In practice, too, the material constants
Z31 and zD are los.'y (i.e., are complex quantities) and are frequency sensitive. From
these remarks, the appro.-imate nature Uf the derived equations way be sarmised.

¶



LIST OF SYMBOLS

Symbol Definition

A area in square meter

a radius of plate (meter)

Cs capacitalce (farads) at constant strain

C1 1 , c12 , e"c. stiffness moduli (N/r2 )

c" velocity of sound in water (m/sec)

D 3tiffness constant, (N - m)

D3  electric displacement (coul/m 2 )

e31  piezo modulus

E,. E3  electric field (volt/m 1 )

f frequency (cps)

gl' g3 . etc. hypergeometric functionsI half thickness of plate (m)

J,(z). In(z). Bessel Functions of order n and argument z
Yý(z), Kn(.)

k wave number, (i" )

k, 3 p, ,/,23 L.h2 D

kf coefficient of electromechanical coupling in flexural mode

M'. radial bending moment per unit of length (Nm.m)

tangential bending moment per unit of length (mim)

N transduction ratio

Pa acoustic power (watts)

Pa real pressure

pi inertial reactive pressure

Q charge (coulombs)

mechanical Q

24

SI-
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LIST OF SYMBOLS (Continued)

Symbol Definition

internal resisting shear per unit of circumferential length

R distance in sound field (m)

r. S, z polar coordinates

s, radial strain (Or i)

S2  tangential strain (- m)
T, 

radial stress (C% -2-)

tangential stress (%.r.2)

V3 applied voltage (volts)

v velocity in meters per second

V, plate deflection in z direction as a function of time (fn)W plate deflection in z direction as a function of frequency (m)

w. p subscripts for water, plate

YgE Young's modulus (N/rn2)

Z acous:.c Jmpedance

z

a. 9. y. b. T constan:

'33 dielect-:.c ( .,.yitant at constant (i.e., zero) strain (farad/r )

1 or 2, dep anding upon backing plate of bilamellate

p density (K- r ')

Poisson's ratio

angular frc quency

A special denominator in Eq. (16)

NOTE: The MKS system is used throughout this paper.
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